Exact k-Wise Intersection Theorems

نویسندگان

  • Tibor Szabó
  • Van H. Vu
چکیده

A typical problem in extremal combinatorics is the following. Given a large number n and a set L, find the maximum cardinality of a family of subsets of a ground set of n elements such that the intersection of any two subsets has cardinality in L. We investigate the generalization of this problem, where intersections of more than 2 subsets are considered. In particular, we prove that when k − 1 is a power of 2, the size of the extremal k-wise oddtown family is (k − 1)(n− 2 log 2 (k − 1)). Tight bounds are also found in several other basic cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leaf-wise Intersections and Rabinowitz Floer Homology

In this article we explain how critical points of a perturbed Rabinowitz action functional give rise to leaf-wise intersection points in hypersurfaces of restricted contact type. This is used to derive existence results for hypersurfaces in general exact symplectic manifolds.

متن کامل

Non-displaceable Contact Embeddings and Infinitely Many Leaf-wise Intersections

We construct using Lefschetz fibrations a large family of contact manifolds with the following properties: Any bounding contact embedding into an exact symplectic manifold satisfying a mild topological assumption is non-displaceable and generically has infinitely many leaf-wise intersection points. Moreover, any Stein filling has infinite dimensional symplectic homology.

متن کامل

K-wise Set-intersections and K-wise Hamming-distances

We prove a version of the Ray-Chaudhuri{Wilson and Frankl-Wilson theorems for kwise intersections and also generalize a classical code-theoretic result of Delsarte for k-wise Hamming distances. A set of code-words a1; a2; : : : ; ak of length n have k-wise Hamming-distance `, if there are exactly ` such coordinates, where not all of their coordinates coincide (alternatively, exactly n ` of thei...

متن کامل

On k-wise set-intersections and k-wise Hamming-distances

We prove a version of the Ray-Chaudhuri–Wilson and Frankl–Wilson theorems for k-wise intersections and also generalize a classical code-theoretic result of Delsarte for k-wise Hamming distances. A set of code-words a; a; . . . ; ak of length n have k-wise Hamming-distance ‘; if there are exactly ‘ such coordinates, where not all of their coordinates coincide (alternatively, exactly n ‘ of their...

متن کامل

Infinitely Many Leaf-wise Intersection Points on Cotangent Bundles

In the article [AF08] we showed that for a special class of perturbations of the Rabinowitz action functional critical points give rise to leaf-wise intersection points. In this article we prove existence of infinitely many leaf-wise intersections points for generic Hamiltonian functions on simply connected cotangent bundles. Along the way we prove that the perturbed Rabinowitz action functiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2005